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Section 1

Overview
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Basic extrapolation approach
I use a highly scalable PDE solver
I run for a selection of numerical grids
I combine results to get higher accuracy and fault tolerance

spatial discretisation

I n1 × n2 grid with ni = 2γi + 1, e.g. γ = (3, 4)
I parallelise over cells of size m1 ×m2, e.g. m1,2 = 5, 9
I numerical solution u(γ)(x , t) obtained by interpolation
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The PDE: Vlasov–Maxwell Equations

I Vlasov-Equation

∂fs
∂t + ~v · ∂fs

∂~x + qs
ms

(~E + ~v × ~B) · ∂fs
∂~v = 0

I Moments of the Distribution Function f

ρ(~x , t) =
∑

s
qs

∫
fs(~x , ~v , t) dv ~j(~x , t) =

∑
s

qs

∫
fs(~x , ~v , t)~vdv

I Maxwell Equations

− 1
c2
∂~E
∂t +∇× ~B = µ0(~j0 +~j) ∇ · ~E = ρ

ε0

∂~B
∂t +∇× ~E = 0 ∇ · ~B = 0
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GENE – Gyrokinetic Electromagnetic Numerical
Experiment (genecode.org)

I open source plasma research code for investigation of
microturbulence

I gyrokinetic approximation of the Vlasov equations
I nonlinear parametrisation of state space with 5 dimensions
I uses MPI and has been shown to be strongly scalable
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Section 2

Sparse grid combination technique
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Hierarchical decomposition

I let Vγ be the approximation space corresponding to u(γ)
I we assume Vα ⊂ Vβ if α ≤ β
I hierarchical decomposition of u(γ) ∈ Vγ into w(α) ∈ Vα:

u(γ) =
∑
α≤γ

w(α)

such w(α) exist and are unique, there is a formula . . .
I if u(γ) = Iγu are the interpolants in Vγ on regular grids, the

w(α) are the hierarchical surplus of u in Vα
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Motivation for the decomposition
I in some cases

‖w(α)‖ ≤ K4−|α|

where |α| = α1 + · · ·+ αd
I the values of 4−|α| for α ≤ (5, 5) are

10−3 2.5 · 10−4 6 · 10−5 1.5 · 10−5 4 · 10−6 10−6

4 · 10−3 10−3 2.5 · 10−4 6 · 10−5 1.5 · 10−5 4 · 10−6

0.016 4 · 10−3 10−3 2.5 · 10−4 6 · 10−5 1.5 · 10−5

0.0625 0.016 4 · 10−3 10−3 2.5 · 10−4 6 · 10−5

0.25 0.0625 0.016 4 · 10−3 10−3 2.5 · 10−4

1 0.25 0.0625 0.016 4 · 10−3 10−3

I typical complexity of computing w(α) is O(2|α|) – the smallest
components are the most expensive:

I w(5, 5) costs 1024 times more than w(0, 0)
I neglecting w(5, 5) produces error in sixth digit
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Motivation for the decomposition

0 2 4 6 8 10

w (add 2)

0

2

4

6

8

v
 (

a
d
d
 3

)

0

3

6

9

12

15

18

21

Figure 1:surplus of QoI
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Combination formula

I sparse grid combination approximation of u(γ) for
γ = (n, n, . . . , n)

uC
n =

∑
|α|≤n

w(α)

I combination formula1

uC
n =

∑
|γ|≤n

cγ u(γ)

I in the case of n = 2 and d = 2 this is

uC
2 = u(0, 2) + u(1, 1) + u(2, 0)− u(0, 1)− u(1, 0)

1|α| = α1 + · · ·+ αd
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Sketch of parallel performance

1. Compute all component solutions u(γ)
I computation of every component is distributed over subcluster2
I multiple u(γ) are computed concurrently
I lower bound for wall clock time O(2n/p)

2. Compute the combination
∑
γ cγ u(γ)

I distributed addition of one component to the sum
I parallel summation
I lower bound for wall clock time O((d − 1) log2(n) 2n/p)

For PDE solvers, time for first step usually dominates

2p= size of subcluster
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Section 3

nonstandard sparse grids
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When some components u(γ) are missing

I large errors (predicted or detected) in u(γ) because of
limitations of physical model, numerical approximation or faults

I error detection may use the w(α)

I components u(γ) have not been computed due to hardware
issues

I some components w(α) are predicted to be very small and can
be neglected

approach

I determine downset containing available grids
I compute some of the missing ones
I use combination coefficients for the particular downset
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when a top level component is missing
I case of n = 5 and d = 2 (target grid: blue)

(0, 5) (5, 5)
(0, 4) (1, 4)

(1, 3) (2, 3)
(1, 2) (2, 2) (3, 2)

(3, 1) (4, 1)
(4, 0) (5, 0)

I the error increases by w(2, 3) if u(2, 3) is missing (yellow)
I we need to compute u(1, 2) in order to compute this

approximation (red)
I the values u(1, 3) and u(2, 2) are now not needed any more

(green)
I solution: compute all components 2 levels down from the top

(this is cheap as the corresponding grids are small)
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when a component at a lower level is missing
I case of n = 5 and d = 2 (target grid: blue)

(0, 5) (5, 5)
(0, 4) (1, 4)

(1, 3) (2, 3)
(1, 2) (2, 2) (3, 2)

(3, 1) (4, 1)
(4, 0) (5, 0)

I when u(2, 2) is missing (yellow) we again could compute
u(1, 2) (red)

I in the combination one then does not use u(1, 3) and u(2, 3)
(green) and the error increases by w(2, 3)

I two possible solutions:
I precompute the components two levels down from the top
I duplicate computations of all components one level from the top
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Families of sparse grids for the combination technique

uI =
∑
γ∈I

cγ u(γ)

I classical SG: I = {α | |α| ≤ n + d − 1}
I truncated SG3: I = ↓ {α | |α| ≤ n + d − 1, α ≥ β}
I partial SG if β ≥ 1:

I = ↓ {α | |α| ≤ n + |β| − 1, α ≥ β}
I SG if u(β) removed and |β| = n + d − 1:

I = {α | |α| ≤ n + d − 1, α 6= β}
I 2-scale SG4:

I =
⋃d

k=1{α | α ≤ n01 + nkek}
I ANOVA:

I = {α | |suppα| ≤ k}
3 ↓ I is smallest downset containing I
4special case: n0 = nk = n
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Section 4

nonstandard coefficients
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Opticom method – best possible combination coefficients
I convex optimisation problem

u = argmin{J(v) | v ∈ V }

I Ritz method

u(γ) = argmin{J(v) | v ∈ V (γ)}

I Opticom method utilises Ritz approach

uO = argminv{J(v) | v =
∑
γ∈I

cγu(γ), cγ ∈ R}

I Ritz is quasi optimal for appropriate norm

‖uO − u‖ ≤ C
∥∥∥∥∥∑
γ

cγu(γ)− u
∥∥∥∥∥ for all cγ ∈ R
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Comparing a general combination with the standard one
for classical sparse grid

uC
n − uSG

n =
∑
|γ|≤n

cγu(γ)−
∑
|α|≤n

w(α)

=
∑
|γ|≤n

cγ
∑
α≤γ

w(α)−
∑
|α|≤n

w(α)

=
∑
|α|≤n

 ∑
γ∈I(α,n)

cγ − 1

w(α)

where I(α, n) = {γ | |γ| ≤ n, α ≤ γ}

I bracket is zero for standard sparse grid solution
I faults require to set certain cγ to zero
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An optimal apriori choice of the (remaining) cγ
I for the case where u(β) is not available or not acceptable one

sets cβ = 0 and the other components are obtained minimising
J(c):

cbest = argmin{J(c) | cβ = 0}

where c is the vector with components cγ for |γ| ≤ n and

J(c) =
∑
|α|≤n

4−|α|
∣∣∣∣∣∣
∑

γ∈I(α,n)
cγ − 1

∣∣∣∣∣∣
this is a piecewise linear optimisation problem with constraints

I the form of the objective function is motivated by the bounds

‖w(α)‖ ≤ 4−|α|K

I approximation error is then bounded by

‖uC
n − uSG

n ‖ ≤ K J(c)
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Section 5

Application
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Eigenvalue problems

I eigenvalue problem Lu = λu with constraint 〈s, u〉 = 1
I let u(γ) and λ(γ) be approximations satisfying the constraint
I introduce the operator G : Rm → V defined by

Gc =
∑
γ∈I

cγ u(γ)

I consider the quadratic optimisation problem

(cC , λC ) = argmin(c,λ) ‖LGc − λGc‖

with constraint5
∑
γ∈I cγ = 1

5follows from the constraint 〈s,Gc〉 = 1
23 / 25



A solution from 1964
I Osborne considered the problem[

K (λ) t
s∗ 0

] [
c
β

]
=
[
0
1

]
I this gives

β(λ) = − 1
〈s∗,K (λ)−1t〉

I the problem β(λ) = 1 is then solved with Newton’s method
I application to the combination technique with

K (λ) = (LG − λG)∗(LG − λG)

I thus we get the method:
1. solve the component problems to get u(γ)
2. reduction operation to compute the matrix K (λ)
3. solve the optimisation problem to get the coefficients cγ

4. evaluate the combination
∑

γ∈I cγu(γ)
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Summary

I consider general combination formulas of the form

uC =
∑
γ∈I

cγu(γ)

I theory based on hierarchical decompositions

u(γ) =
∑
α≤γ

w(α)

I lead to new algorithms
I with extra degree of parallelism
I avoids curse of dimension
I provides a new level of fault tolerance
I maintains scalability
I reuses the original code to compute u(γ)
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